‌بحوث علمية

بحث عن نظرية الكم

بحث عن نظرية الكم والذرة سنتعرف عليه من خلال هذا المقال، توضيح نموذج بور لذرة الهيدروجين كأبسط مثال على الذرة الذي يعد أول نموذج غير تقليدي عن الذرة

بحث عن نظرية الكم

بدايةً في بحث عن نظرية الكم والذرة توضيح دور الكيميائيون خلال القرن العشرين بدراسة تركيب الذرات واكتشفوا الإلكترونات في عام 1897م وحينها أظهر العالم طومسون وجود جزيئات أساسية موجودة في الذرات وبعد أربعة عشر عامًا اكتشف العالم رذرفورد أنّ معظم كتلة الذرة توجد في نواة صغيرة حيث يبلغ نصف قطرها 100000 مرة من كتلة الذرة

وفي غضون ذلك قام ماكس بلانك خلال الفترة ما بين 1858م إلى 1947م بوضع نظرية تنص على أنّ أشعة الضوء مصنوعة من فوتونات مكافئة لجزيئات حركة الموجة ونتجت عن هذه الاكتشافات مفاهيم جديدة، وعندما تم دمج هذه المفاهيم والاكتشافات والنظريات ظهرت أفكار جديدة وكانت النتيجة هي نظرية الكم وسميت بذلك من الطبيعة المنفصلة لمستويات الطاقة في النظم المجهرية وهذه النظرية تعطي تفسيرات جيدة لظواهر العالم الذري وشبه الذري

ويُذكر بأنّ الذرة هي أساس بناء الكون وتتكون من البروتونات والنيوترونات داخل النواة التي تحيط بها الإلكترونات المدارية. وفي البحث عن نظرية الكم والذرة يمكن بدايًة توضيح نموذج بور لذرة الهيدروجين كأبسط مثال على الذرة الذي يعد أول نموذج غير تقليدي عن الذرة

حيث وضح هذا النموذج أنّ أطياف الانبعاث للعناصر المختلفة تحتوي على خطوط منفصلة وتظهر هذه الخطوط بأربعة أطوال موجية تنبعث من الضوء في المنطقة المرئية ومنها أطياف الانبعاث لذرة الهيدروجين على شكل خطوط تظهر في أربعة أطوال تبلغ: 410 و 434 و 486 و 656 نانومتر

وتشير أطياف الانبعاث الكمي إلى أنّ الإلكترونات ربما لا توجد إلا داخل الذرة عند بعض الأقطار والطاقات الذرية، ومن هذا النموذج استخلص العالم بور معادلة مستويات الطاقة المختلفة في ذرة الهيدروجين ونجح أيضًا هذه النموذج في التنبؤ أيضًا بمستويات الطاقة في الأنظمة الأخرى ذات الإلكترون الواحد كالهيليوم.

ويُذكر في بحث عن نظرية الكم والذرة بُدأ اكتشاف ميكانيكا الكم كمجال للدراسة عندما أثبت الفيزيائيان ألبرت أينشتاين وماكس بلانك أنّ الضوء والمادة يمكنهما أنّ يتصرفا كجسيمات وموجات وضمن ذلك إذا كانت الجسيمات مثل الإلكترونات يمكن أن تتصرف كالموجات

فهذا يعني أنّها لا تملك موقعًا دقيقًا بالطريقة التي يمكن تخيلها بالنسبة للجسيم، وتوضح ميكانيكا الكم بأنّ لا يمكن معرفة بدقة كل من موقع وسرعة الإلكترون في نفس الوقت وهذا يعني بأنّ لا بد من تخيل الإلكترونات كأشياء مفردة تدور حول الذرة وبدلاً من ذلك يوجد احتمال العثور على إلكترون في موقع معين

وينتهي بشيء يسمى بسحابة الإلكترون والتي تُعرف بأنّها مساحة في الفضاء من المحتمل وجود فيها إلكترون، ويضاف في بحث عن نظرية الكم والذرة أنّ للجسيمات أرقامًا مُعينة تسمى أرقام الكم، والتي تشمل أرقام الكم الجسيمية المدارية وأرقام الكم المغناطيسية، وبُذكر بأنّ لا يوجد إلكترونان في الذرة يمكن أن يكون لهما نفس أرقام الكم.

وتُشير أرقام الكم في البحث عن نظرية الكم والذرة إلى مستوى الطاقة الذي يوجد فيه الإلكترون وفي نموذج بور تمثل هذه الأرقام إلى مدى بعد المدار عن النواة فيسمى المدار الأول ن=1 والثاني ن=2 وهكذا، وبالنسبة لرقم الكم المغناطيسي فهو مجرد رقم يمثل الاتجاه الذي يُشير إليه الإلكترون

وتشير الخاصية الميكانيكية الكمية إلى أنّ الإلكترونات تكون على شكل أزواج، وفي كل زوج يدور إلكترون واحد في اتجاه معين بينما يدور الإلكترون الآخر في الاتجاه الآخر المعاكس ولا يمكن أن يوجد إلكترونان لهما نفس اتجاه الدوران، وفي حالة وجود مواد تحتوي على إلكترونات غير زوجية من المرجح أنّ تكون هذه المواد مغناطيسية.

ويمكن في البحث عن نظرية الكم والذرة ذكر تطور آخر لهذه النظرية قام به العلم الفيزيائي لويس دي بروي بناءً على عمل آينشتاين وبلانك كما ذُكر سابقًا حيث أظهر كيف يمكن للموجات الضوئية أنّ تظهر خواص تشبه الجسيمات، وافترض أنّ هذه الجسيمات يمكن امتلاكها خصائص تشبه الموجة، واشتق لويس معادلة توضح العلاقة بين كتلة الجسيم وطول الموجة المُقترنة به بالعلاقة: λ= ثابت بلانك/ كتلة الجسم*سرعة الجسم.

حيث أنّ λ هي طول الموجة بوحدة المتر و ثابت بلانك بوحدة جول.ثانية وكتلة الجسيم بوحدة كغ وسرعة الجسم بوحدة متر/ثانية. ويعتبر النموذج الميكانيكي الكمومي للذرة أكثر تجريدًا وتعقيدًا إلا أنّ الصورة الأكثر دقة؛ لكيفية عمل الذرات ولهذا السبب يسمح بتنبؤات أفضل حول كيفية تصرف الجسيمات عند محاولة التفاعل معها

وتستخدم ميكانيكا الكم لإنشاء أجهزة تلفزيون بشاشات مسطحة وأجهزة استشعار للكاميرات وأجهزة الكمبيوتر لذلك فإن معرفة ميكانيكا الكم مفيد جدًا، ويعتبر هذا النموذج الذي اقترحه العالم إروين شرودنجر أساس الفهم الحديث للذرة.

بحث عن الضوء وطاقة الكم

بحث عن الضوء وطاقة الكم
بحث عن الضوء وطاقة الكم

ارتبط ميكانيكا الكم مع سلوك المادة والضوء، ووصف خصائص الجزيئات والذرات وما تحتويه من بروتونات وإلكترونات ونيترونات، ودقائق أخرى، وتشمل هذه الخصائص تفاعلات الجسيمات مع بعضها البعض ومع الضوء وما ينتج عنه من أشعة كهرومغناطيسية

ويكون للإشعاع والمادة خصائص موجية وجسيمية، واعتقد العلماء أن الضوء يتكون من جسيمات تنطلق في الفراغ أطلقوا عليها اسم الفوتونات، وهي نوع من أنواع الطاقة الاشعاعية والتي تنشأ نتيجة قفز أحد الالكترونات الموجودة في الذرة من مستوى طاقة أعلى إلى مستوى طاقة أقل

وبعد ذلك يصدر الالكترون طاقة اشعاعية لها موجة معينة وتكون هذه الموجة على شكل الفوتونات، ويحدث ذلك بعد إثارة الفوتون بتعريضه لنوع من أنواع الطاقة، على سبيل المثال الطاقة الحرارية، فبذلك يكون الضوء وطاقة الكم عمليتان مترافقتان لا تحدث احداهما دون الأخرى.

تعريف نظرية الكم

نظرية الكم أو ما يُشار إليه عادةً بميكانيكا الكم هي جزء من الفيزياء الحديثة، وهي النظرية التي تهتم بدراسة سلوك المادة والضوء في المستوى الذري والدون ذري (أي بأبعاد تُقاس بالنانومتر على الأكثر، حيث إن النانومتر الواحد يساوي 1×10-9 متر). تحاول ميكانيكا الكم تفسير سلوك الذرة ومكوّناتها الأساسية (مثل البروتونات، والنيوترونات، والإلكترونات) والمكونات الأساسية الأصغر حجماً (مثل الكواركات (بالإنجليزية: Quarks)) مجتمعة أو كلٌ على حدة.

عند دراسة الميكانيكا الكلاسيكية فإننا نهتم بوصف الأجسام التي يُمكننا التعامل معها في حياتنا اليومية، وهو الأمر الممكن واليسير، لكن الأمر مختلفٌ في ميكانيكا الكم كما سوف نرى.

عند دراسة أي نظام كلاسيكي فإننا نقوم بتحديد موقعه وزخمه الابتدائيين، ثم نقوم بتحديد القوى المؤثرة على هذا الجسم، وبهذا يمكننا التنبؤ بكل شيء يتعلق بهذا النظام (أي إننا يمكننا أن نتنبأ بموقع النظام بعد مرور زمنٍ معين، أو سرعته أو تسارعه، بل وحتى يمكننا التنبؤ بهذه الأشياء وغيرها في الماضي)، ومن الجدير بالذكر أنه يُمكننا رصد كل هذه الكميات الفيزيائية بمختلف الطرق.

ميكانيكا الكم تهتم أيضاً بدراسة الكميات القابلة للرصد مثل الزخم والموقع، لكن الأمر هنا مختلفٌ قليلاً، إذ إنه لا يمكن التنبؤ بسلوك النظام الذري (أو دون الذري) في المستقبل أو في الماضي، وذلك بسبب استحالة تحديد الحالة الابتدائية لأي نظام بدقة، فلا يمكن تحديد موقع وزخمه معاً؛

حيث إنه سوف يكون هناك نسبة من الريبة (بالإنجليزية: Uncertainty) عند محاولة تحديد هاتين الكميتين بشكلٍ متزامن فعلى سبيل المثال إذا قمنا بتحديد موقع جسيمٍ بدقة عالية، فإنه لن يكون بالإمكان تحديد زخم هذا الجسيم، وبالتالي لن يكون بالإمكان تحديد موقعه في المستقبل!

خاتمة عن نظرية الكم

خاتمة عن نظرية الكم
خاتمة عن نظرية الكم

في هذه المقالة، نظرنا في تطور نظرية الكم والطرق المختلفة التي تم استخدامها لشرح سلوك الذرات. لقد رأينا أن ثنائية الموجة والجسيم للضوء هي سمة أساسية لنظرية الكم، وهذا يؤدي إلى مبدأ عدم اليقين في هايزنبرغ.

لقد رأينا أيضًا كيف تم استخدام نظرية الكم لشرح سلوك الإلكترونات في الذرات، وكيف يمكن استخدامها للتنبؤ بخصائص الذرات والجزيئات.

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

زر الذهاب إلى الأعلى